New publication in JACS

| categories: publication, news | tags:

Electrocatalytic Oxygen Evolution with an Immobilized TAML Activator

Ethan L. Demeter, Shayna L. Hilburg, Newell R. Washburn, Terrence J. Collins, and John R. Kitchin

Iron complexes of tetra-amido macrocyclic ligands are important members of the suite of oxidation catalysts known as TAML activators. TAML activators are known to be fast homogeneous water oxidation (WO) catalysts, producing oxygen in the presence of chemical oxidants, e.g., ceric ammonium nitrate. These homogeneous systems exhibited low turnover numbers (TONs). Here we demonstrate immobilization on glassy carbon and carbon paper in an ink composed of the prototype TAML activator, carbon black, and Nafion and the subsequent use of this composition in heterogeneous electrocatalytic WO. The immobilized TAML system is shown to readily produce O2 with much higher TONs than the homogeneous predecessors.

http://pubs.acs.org/doi/full/10.1021/ja5015986

Congratulations Ethan!

Copyright (C) 2014 by John Kitchin. See the License for information about copying.

org-mode source

Org-mode version = 8.2.5h

Discuss on Twitter

New publication in RSC Advances

| categories: publication, news | tags:

Table of Contents

A collaborative paper with our colleagues at NETL and U. Pitt. was just accepted in RSC Advances

cite:thompson-2014-co2-react
!

1 Bibtex entry

#+BEGINSRC: :tangle /tmp/extract-bib269688VI.bib @Article{thompson-2014-co2-react, author = {Thompson, Robert L. and Albenze, Erik and Shi, Wei and Hopkinson, David and Damodaran, Krishnan and Lee, Anita and Kitchin, John and Luebke, David Richard and Nulwala, Hunaid}, title = {\ce{CO_2} Reactive Ionic Liquids: Effects of functional groups on the anion and its influence on the physical properties}, journal = {RSC Adv.}, year = 2014, pages = "-", publisher = {The Royal Society of Chemistry}, doi = {10.1039/C3RA47097K}, url = {https://doi.org/10.1039/C3RA47097K }, abstract = "Next generation of gas separation materials are needed to alleviate issues faced in energy and environmental area. Ionic liquids (ILs) are promising class of material for CO2 separations. In this work{,} CO2 reactive triazolides ILs were synthesized and characterized with the aim of developing deeper understanding on how structural changes affect the overall properties for CO2 separation. Important insights were gained illustrating the effects of substituents on the anion. It was found that substituents play a crucial role in dictating the overall physical properties of reactive ionic liquids. Depending upon the electronic and steric nature of the substituent{,} CO2 capacities between 0.07-0.4 mol CO2/mol IL were observed. Detailed spectroscopic{,} CO2 absorption{,} rheological{,} and simulation studies were carried out to understand the nature and influence of these substituents. The effect of water content was also evaluated{,} and it was found that water had an unexpected impact on the properties of these materials{,} resulting in an increased viscosity{,} but little change in the CO2 reactivity." } #+ENDSRC

Copyright (C) 2014 by John Kitchin. See the License for information about copying.

org-mode source

Org-mode version = 8.2.5h

Discuss on Twitter
« Previous Page