New publication - Origin of the Stokes-Einstein Deviation in Liquid Al-Si

| categories: publication, news | tags:

In many liquid metal alloys the diffusivity and viscosity are related to each other through the Stokes–Einstein–Sutherland (SES) equation. This is useful because it is difficult to measure these properties in liquid metals, and the correlation can be used in design. Near the melting point, however, this relation often fails. In this work we use molecular dynamics to investigate deviations in the SES for molten Si-Al. We find that the viscosity changes faster than the diffusivity due to the formation of atomic clusters. These clusters cause the SES deviation in this liquid alloy system.

@article{zhan-2021-origin-stokes,
  author =       {Ni Zhan and John R. Kitchin},
  title =        {Origin of the Stokes-Einstein Deviation in Liquid Al-Si},
  journal =      {Molecular Simulation},
  volume =       {},
  number =       {},
  pages =        {1-11},
  year =         2021,
  doi =          {10.1080/08927022.2021.2012572},
  url =          {http://dx.doi.org/10.1080/08927022.2021.2012572},
  DATE_ADDED =   {Fri Dec 17 07:41:39 2021},
}

Copyright (C) 2021 by John Kitchin. See the License for information about copying.

org-mode source

Org-mode version = 9.5.1

Discuss on Twitter